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SUMMARY

In this paper, a modi�ed space–time method is presented for the simulation of convection–di�usion
equations. The new method di�ers from the original space–time method in the sense that the weight
functions for space and time are di�erent. The performance of the proposed algorithm is studied for
numerical simulation of incompressible immiscible two-phase �ow in porous media. The governing
equations consist of one conservation of mass equation for each phase, the Darcy law and one capillary-
saturation correlation for the �ow. By de�ning a global pressure, the governing equations lead to
a system of nonlinear equations in terms of this global pressure, the velocity components and the
saturation of one phase. The �ow equations are solved for the global pressure and velocity components
using a stabilized mixed �nite element method while the saturation equation is solved by the standard
and modi�ed space–time element methods. The performance of the proposed space–time method is
compared with that of the original Petrov–Galerkin space–time method for both linear and nonlinear
cases. The e�ect of the tuning parameters of the standard method, grid size and the capillary pressure are
studied for a one-dimensional problem. A stability analysis is also carried out for the proposed space–
time method. Finally, to demonstrate the capability of the proposed method in dealing with homogeneous
and heterogeneous problems two-dimensional water-�ooding �ve-spot test cases are studied. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical study of multi-phase �ow in porous media has been a major challenge for the
scienti�c community. This manifests itself when dealing with realistic engineering problems
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where the accuracy and computational e�ciency requirements are to be met. One application
which has attracted signi�cant attention is the �uid �ow in hydrocarbon reservoirs. The main
challenge for today’s reservoir engineers is how to enhance the rate of production so that
it remains economically viable. Such methods are known as enhanced oil recovery (EOR)
methods. Various EOR technologies have been introduced in the literature [1–5]. It is known
that the rate of production from a hydrocarbon reservoir decreases during its production life-
time as a result of excessive pressure drop in the reservoir. In order to sustain the rate of
production, it is necessary to maintain the reservoir pressure. Water �ooding is one of the
recovery methods in which pressurized water is injected from water wells into the reservoir
to displace the resident oil towards the low-pressure production wells. Enhanced oil recov-
ery processes have all characteristics of multi-phase �ow in a porous medium and prediction
of its performance is of signi�cant practical importance. This prediction can be achieved by
mathematical modelling and using numerical tools [2, 4, 6, 7].
For the sake of simplicity, only immiscible incompressible �ow of oil and water phases is

considered in the present work. Here, the e�ect of temperature variations on the phase and
physical properties of the formation are ignored. The governing equations include the gen-
eralized Darcy’s law and the continuity equations for each phase, which are highly coupled.
In addition, two constitutional relations are required for the relative permeability of phases
and the capillary pressure between the two phases in order to close the system of equations.
The governing equations can be described in terms of various choices of the dependent vari-
ables [7]. One popular choice uses the concept of a global pressure, which takes an interme-
diate value between the pressures of two phases [6, 8, 9]. A major advantage of this approach
is that it produces models of known mathematical nature for which rigorous mathematical and
numerical treatments exist.
There are various solution strategies for handling the above mentioned equations which

are normally time dependent. This ranges from a fully explicit to a fully implicit approach.
A widely accepted approach for this purpose is the so-called IMplicit in Pressure and Explicit
in Saturation (IMPES) algorithm [6, 7]. This approach facilitates sequential solution of the
pressure and saturation equations. In other words, as the pressure varies only slightly in
time, at each time step the global pressure and velocity equations are �rst solved implicitly.
Subsequently, the saturation equation is solved explicitly to complete one time step.
The �nite element method has been widely used for conservation laws and �ow problems

[10–12]. The method has been particularly successful in the �eld of reservoir simulation
[6, 7, 10, 13–16]. When IMPES algorithm is used, the velocity �eld explicitly appears in the
saturation equation. Therefore, the accuracy of velocity �eld becomes a vital factor to achieve
accurate saturation distributions. In addition, since the satisfaction of the conservation of
mass is critical in the reservoir engineering simulations, the �ow equations are frequently
solved using the mixed �nite element method [13, 15–17]. The major drawback of the mixed
methods is their complexity as di�erent interpolation functions are required for the velocity and
pressure variables to satisfy the so-called inf–sup condition [11, 15, 17]. Masud and Hughes
[15] introduced a stabilized mixed �nite element (SMFE) method, which requires no mesh-
dependent parameter and satis�es both local and global mass conservation. Their method also
has an improved convergence rate in comparison with other mixed �nite element methods.
The saturation equation is a transient convective-dominant equation, which requires

particularly a time accurate and computationally e�cient method. There are a number of
numerical schemes which can be used for this purpose. Most of such methods introduce some
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numerical di�usion to suppress the spurious numerical oscillations. One choice involves using
the Petrov–Galerkin method for spatial discretization along with the so-called �-method for
temporal discretization [17, 18]. Also, Espedal and Ewing developed a family of precondi-
tioned characteristic Petrov–Galerkin subdomain methods for two-phase immiscible �ows that
suits parallel computing [19]. Helmig [7] proposed a modi�ed Petrov–Galerkin method for
the solution of the saturation equation, which alleviates the spurious numerical oscillations
induced due to the presence of the dominant convective term. In this method, the order of
weight functions is higher than the basis functions by a factor of two. Cardle [20] proposed a
similar explicit method for solving advection–di�usion problems in which the weight functions
used for the time derivative di�er from those used for the spatial derivatives.
A family of �nite element method which has attracted the attention of researchers is the so-

called space–time element method (STEM). An excellent presentation of these methods was
given by Yu and Heinrich [21, 22] and Pepper and Heinrich [18]. In this work, the Petrov–
Galerkin space–time element method is considered. The method introduces some numerical
di�usion and dispersion, which are dependent on two tuning parameters. When solving linear
equations, the method is at least second-order accurate in space and an optimum value can
be found for each of these parameters by a truncation analysis [18, 21, 22]. The method has
been also extended to the solution of nonlinear equations [23].
This paper presents an algorithm for solving the �ow of two immiscible incompressible

�uids in a heterogeneous porous formation. First, a detail study of the problem in one dimen-
sion is given where the pressure and velocity equations are solved using the SMFE method.
The saturation equation is solved using two versions of the space–time element method; the
Standard STEM (SSTEM) and the Modi�ed STEM (MSTEM) methods. The performance of
the two methods is compared and the e�ect of the capillary pressure and the tuning parameters
of the SSTEM are investigated using three 1D test cases. In the �rst case, it is assumed that
the phase relative permeability is linear, hence, becoming a linear pure advection problem.
In the second case, the nonlinear model of Brooks–Corey for the phase relative permeability
is considered. In the third case, the e�ect of capillary pressure is included and a nonlinear
advection–di�usion problem is solved. A stability analysis of the modi�ed method (MSTEM)
is also presented. The algorithm is then extended to the 2D cases. For 2D problems, again, the
pressure and velocity equations are solved by the SMFE method. However, due to superior
performance shown by the MSTEM, only this method is employed for solving the saturation
equation in 2D. Three �ve-spot problems including homogeneous and heterogeneous media
are solved and the e�ect of element size is investigated.

2. MATHEMATICAL FORMULATION

2.1. Mathematical model

The governing equations for the physical phenomenon of interest in this work are those of
general multi-phase �ow in a porous media. These consist of the conversation of mass and
momentum equations which are elaborated below.
Conservation of mass. The mass balance equation for each phase is given by

@
@t
(�SiBi) +∇ · qi=0 (1)
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where subscript i refers to ith phase, t is time, � is density, q is the volumetric �ow rate
vector, � is the formation porosity. Also, Bi=�i=�i;ref is the volume factor where �ref represents
the density at a given reference condition. This quantity is unity for the incompressible case
studied here. In Equation (1), the saturation Si is de�ned as the ratio of the volume of pores
�lled with phase i to the volume of the pore space. It is noted that

∑
i Si=1.

Conservation of momentum. The generalized Darcy’s law for the ith phase, is written as

qi=− dikriK · ∇(pi − �igz) (2)

where di=Bi=�i is the mobility factor, kri is the relative permeability, pi is the pressure of
the ith phase and K is the tensor of absolute permeability. The gravitational acceleration is
g and z is the component of the position vector in the direction of the gravitational �eld. In
this study a two �uid system consisting of water and oil is considered.
The unknowns in the above equations are the pressure, volumetric �ow rate and saturation

of phases. To have a complete set of equations, these should be accompanied by appropriate
constitutive relations for the capillary pressure and relative permeability.
As mentioned before, to reach a mathematically identi�able model, the global pressure

concept is used [6, 8, 9]. This is de�ned as

P=
1
2
(Pw + Po) + PCM(x)

∫ Sw

SC

(
�w(S)− 1

2

)
dpC(S)
dS

dS (3)

where �i=diki=d is the ith phase fractional �ow and d=
∑

i dikri is the global mobility. This is
in fact an integral transform of the original equations whose role is to weaken the decoupling
among the equations. In general, it is assumed that the e�ect of the capillary pressure contains
two parts; one is dependent on the position and the other is dependent on saturation. In other
words, it is assumed that PC(x; S)=PCM(x)pC(S). The capillary pressure vanishes at SC.
By using the global pressure de�nition and after some mathematical manipulations and also
assuming that the �uids are immiscible incompressible, the following equations are obtained
[6, 8, 9]:

q=− dK ·
[
∇P +∇PCM(x)

∫ Sw

SC

d�w(S)
dS

pC(S) dS − �o�w dK · ∇((�w − �o)gz)
]

(4)

∇ · q=0 (5)

�
@Sw
@t

+
d�w
dSw

q · ∇Sw − ∇ ·
[
�o�wPCM

dpC
dSw

dK · ∇Sw − �o�w dK · ∇((�w − �o)gz)
]
=0 (6)

Equations (4) and (5) describe the velocity and pressure �elds and Equation (6) gives the
water saturation distribution. In the present work, the e�ect of gravitational force is neglected.
Therefore, the �nal set of equations becomes

q=− dK ·
[
∇P +∇PCM(x)

∫ Sw

SC

d�w(S)
dS

pC(S) dS

]
(7)

∇ · q=0 (8)

�
@Sw
@t

+
d�w
dSw

q · ∇Sw − ∇ ·
[
�o�wPCM(x)

dpC
dSw

dK · ∇Sw
]
=0 (9)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1221–1242



MODIFIED SPACE–TIME FINITE ELEMENT METHOD 1225

It is also assumed that PCM(x)=1. If the e�ect of the capillary pressure is negligible then
the following set of equations is yielded [7]:

q=− dK · ∇P (10)

∇ · q=0 (11)

�
@Sw
@t

+
d�w
dSw

q · ∇Sw =0 (12)

Equation (12) is the so-called Buckley–Leverett equation, which is a pure convection equation,
and it is known that some di�culties arise in its numerical simulations.

2.2. Boundary conditions

In order to have a unique solution for the aforementioned system of equations, a proper set
of boundary conditions is required. Here, for the global pressure equations, the boundary of
domain is decomposed into disjoint open sets �pD and �pN corresponding to Dirichlet (p=pD)
and Neumann (q · n= qinj) boundary conditions. Similarly, �sD and �sN are the Dirichlet and
Neumann boundary regions for the saturation equation, respectively. The Dirichlet boundary
conditions are applied on the injection and production well(s) while the Neumann boundary
conditions are applied on the regions where no-�ow boundary exists.

3. DISCRETIZATION AND NUMERICAL METHODS

Referring to the governing equations obtained for the �ow �eld, e.g. (7) and (8), it is observed
that the velocity variable is strongly dependent on the gradient of pressure. One way to solve
these equations is to derive a Poisson for the pressure by combining them and after solving
this Poisson equation, obtain the velocity �eld by taking the gradient of the pressure �eld.
It is known, however, that this approach will introduce signi�cant numerical error in the
solution. A better approach can be devised by employing the so-called mixed �nite element
method in which both variables are calculated simultaneously. In this way, q is computed
directly and coupling among equations is preserved. It should be noted that in 1D cases it
is not required to solve the global pressure equation and by knowing the rate of injection or
production, the volumetric �ow is directly speci�ed. Details of the discretization of (10) and
(11) using a mixed method can be found elsewhere [6, 13, 15, 16]. In this work the SMFE
is used for the solution of these equations [15]. The SMFE method satis�es both local and
global conservation properties, which are important in reservoir simulation. Besides, the rate
of convergence of this scheme is better than the conventional mixed methods [15].
The water saturation equation, (9), is discretized by the space–time element method

(STEM). Since in this method the shape functions di�er from weight functions, STEM belongs
to the category of the Petrov–Galerkin method [18, 22]. This method improves the accuracy
of the numerical scheme by introducing balancing di�usion and dispersion terms. Generally,
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the weight functions in the STEM can be written in the following form:

Wi=Mi +
h

2‖V‖
(
�+

��t
2

@
@t

)
V · ∇Mi (13)

where Mis refer to the test functions constructed using an even quadratic function in time and
linear in space, h is the element length in the �ow direction, V is the �ow velocity, and �
and � are tuning parameters. The tuning parameters are determined from the truncation error
and stability analysis as [18, 22]:

�= coth
( �
2

)
− 2
�

(14)

�=
C
3

− 2�
�C

(15)

with � and C being the Peclet and Courant numbers, respectively. Using these parameters
increases the accuracy of the scheme to third order in space and second order in time [18, 22].
For 1D problems, the test functions Mi are written as

M1(	; 
) = 1
2(1− 	)(1− 
2)

M2(	; 
) = 1
2(1 + 	)(1− 
2)

(16)

where 	 and 
 represent space and time coordinates, respectively. A plot of function M1 is
shown in Figure 1 (left). Stability analysis for a linear convection–di�usion PDE employing

Figure 1. Test functions (M1): (left) quadratic in time and linear in space
and (right) bilinear in time and space.
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test functions given in (16) shows that if � is zero then the algorithm is unconditionally
stable but its spatial accuracy is reduced to the second order [22]. If both of the adjusting
parameters set to their optimum values, then the algorithm will be stable only for C61
[18, 22]. It should be noted that the optimum values for the tuning parameters, � and �, are
obtained from Equations (14) and (15) only if the test functions are quadratic in time. If
the test functions are bilinear, then the optimum values of the tuning parameters are obtained
from [22]

�=
6
C�

[
coth

( �
2

)
− 2
�

]
(17)

�=
(
1− 6

C�

) [
coth

( �
2

)
− 2
�

]
(18)

Yu and Heinrich [22] have shown that the use of weight functions which are bilinear in space
and time results in an over-damped solution for all wave numbers while the quadratic weight
functions do not show such a shortcoming [22]. In this paper, test functions are opted to be
quadratic in time and linear in space. Figure 1 (left) shows a plot of such a test function.
In the rest of this section, two algorithms are presented based on the STEM for solving a

convection–di�usion equation. In the �rst algorithm, Equation (9) is multiplied by a weight
function. After using the integration by parts, the following equation is obtained:

∫
�
Wti�

@Sw
@t
d� +

∫
�
Wsi
d�w
dSw

q · ∇Sw d� +
∫
�

∇Wsi ·
[
�o�wPCM

dpC
dSw

dK · ∇Sw
]
d�

=
∫
�
Wsi ·

[
�o�wPCM

dpC
dSw

dK · ∇Sw
]
d� (19)

Here, the weight functions Wti, applied to the time derivative can be di�erent from the weight
functions Wsi applied to the spatial derivatives [20, 24].
1st Algorithm: In the �rst algorithm, the Standard STEM (SSTEM) approach is used.

That is Wsi=Wti which are obtained from Equation (13). Details can be found in References
[18, 22].
2nd Algorithm: In the second algorithm, a Modi�ed STEM (MSTEM) approach is used.

The weight functions Wsi are obtained from Equation (13) while the weight functions Wti are
the same as the test functions, given by Equation (16). It will be shown later that this choice
signi�cantly improves the accuracy of the solution.

3.1. Stability analysis

Applying these weight functions to the following 1D linear advection–di�usion equation:

@�
@t
+ u · @�

@x
−D@

2�
@x2

= 0 (20)
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Figure 2. Phase error (left) and damping factor (right) of the modi�ed algorithm.

results in the following di�erence equation for the jth node:

1
9
[(�n+1j−1 − �nj−1) + 4(�n+1j − �nj ) + (�n+1j+1 − �nj+1)]

+
C
6
[(�n+1j+1 + �

n
j+1)− (�n+1j−1 + �

n
j−1)]−

[
C
6
(�− �) + C

3�

]
(�n+1j+1 − 2�n+1j + �n+1j−1)

−
[
C
6
(�+ �) +

C
3�

]
(�nj+1 − 2�nj + �nj−1)=0 (21)

where C= u�t=�x is the Courant number and �= u�x=D is the Peclet number. Inserting
�nj = �

neikjh in Equation (21), using Euler’s formula (ei�= cos � + i sin �) and letting �= kh,
the ampli�cation factor � is obtained from:

�=

[
2
9

(
1 + 2 cos2

�
2

)
− 2C
3

(
�+ �+

2
�

)
sin2

�
2

]
− i

(
C
3
sin �

)
[
2
9

(
1 + 2 cos2

�
2

)
+
2C
3

(
�− �+ 2

�

)
sin2

�
2

]
+ i

(
C
3
sin �

) (22)

This stability analysis shows that if �=0 the algorithm is unconditionally stable for all �.
If � �=0, then |�|¡1 only if C61, so the method becomes only conditionally stable. The
damping factor and the phase error are shown in Figure 2 for �=20 and C=0:8. It is seen
that the method practically produces no phase error when the wave number is L=h=5 (L is
the wave length) while it produces some damping for values smaller than L=h=10. It is also
observed that the damping factor for MSTEM method is relatively larger than that of the
standard method. A comparison of the results obtained using the modi�ed algorithm with the
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standard method reveals that both methods give identical phase errors provided that the same
values are used for the tuning parameters. As it can be seen from Figure 2 and Equation (22),
when employing identical values for the tuning parameters, the element size must be halved
to achieve the same damping factor using the MSTEM. To �nd the optimum values of the
tuning parameters of the modi�ed algorithm a truncation error analysis is required.

3.2. Solution procedure

It must be emphasized that for 1D problems there is no need to solve the global pressure and
total velocity equations. For 2D cases, however, the IMPES algorithm is used. The matrices
are stored using the general storage scheme by rows or compressed sparse row (CSR) storage
format [25]. The resulting linear system of equations is solved using a sparse version of the
generalized minimum residual method (GMRES) [25]. For the system of �ow equations, an
ILU precondition is also used. The saturation equation is linearized using Picard’s iterative
technique at each time step. When the capillary pressure is nonzero, an under-relaxation
parameter 0.5 is used while no under-relaxation is required when the capillary pressure is
negligible.

4. TEST CASES

In this section, several test cases including 1D and 2D problems are studied. For 1D test
cases, both zero and nonzero capillary pressure situations are studied using the SSTEM and
MSTEM algorithms. The 2D test cases are solved using both the SSTEM and the MSTEM
algorithms.
In the 1D problem, water is injected from one end and oil is produced from the other end.

The �led is 300m long and the production duration is 1500 days. The analytical solution for
this problem with zero capillary pressure can be found in Reference [7]. For all calculations,
the time step was one day. Dirichlet boundary conditions are applied for the saturation equation
at the injection and production wells. The boundary conditions for the saturation variable are
de�ned as follows:

Sw = 1− Srn at injection well

Sw = Srw at production well
(23)

where Srn is the residual saturation of the nonwetting phase and Srw is the residual saturation
of the wetting phase.
The second test case involves a two-phase �ow problem in a �ve-spot model. A schematic

of the computational domain is a 300m× 300m square and the wells are represented in the
form of two quarter circles of 30m radius taken out of it. The physical properties of both
�uids are given in Table I. Three choices for the absolute permeability of the matrix are
considered here; homogeneous, block heterogeneous and continuous heterogeneous. The rate
of water injection is 0.12 kg=s. Helmig [7] has suggested that it is better to distribute the
injection rate over the well’s boundary using a uniform distribution normal to the boundary.
The Dirichlet boundary conditions for the saturation equation are applied at the injection
and production wells in the same way as for the 1D problem. The boundary conditions are
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Table I. Fluid and matrix properties (1D).

Water density, �w 1000 kg=m3

Oil density, �o 1000 kg=m3

Water dynamics viscosity, �w 0:001 kg=ms
Oil dynamics viscosity, �o 0:001 kg=ms
Residual water saturation, Srw 0 [—]
Residual oil saturation, Srn 0 [—]
Oil production rate, qo (in 1D case) 1:5× 10−4 kg=m2 s
Initial saturation 0 [—]
Capillary pressure model (in 1D case) Brooks–Corey model Pd=1Pa, =2
Relative permeability model Brooks–Corey model =2
Absolute permeability, K 10−7 m2

Porosity, � 0.2 [—]

as follows:

Sw = 1− Srn; |q|=0:12 kg=s injection well

Sw = Srw; P=105 Pa production well

q · n=0 rest of boundary

(24)

5. NUMERICAL RESULTS AND DISCUSSION

5.1. One-dimensional case I: linear relative permeability with zero capillary pressure

In this case, the saturation equation becomes a linear �rst-order partial di�erential equation.
The linear pure convection problem has been extensively studied by Heinrich and Yu [22],
Hughes [15], Helmig [7], Chavent and Ja�re [6], Cardle [20] and Huyakorn and Nilkuha [24].
The linear advection–di�usion problem has been studied by Heinrich and Pepper in Reference
[18] using STEM. Figure 3 shows the computed saturation pro�les after 500 and 1500 days
using the SSTEM and MSTEM algorithms using optimum values of the tuning parameters, �
and �.
Figure 4(a) shows the e�ect of tuning parameters of the standard method on the solution at

1500 days. It is clear that when no tuning parameter is used, the solutions exhibit oscillations.
For this case, it is seen that the tuning parameter � does not play an important role. In fact,
as the Courant number decreases, the numerical di�usion is also lowered and the numerical
dispersion does not alter the position of the front. On the other hand, a lower Courant number
decreases the numerical di�usion, hence, diminishes the e�ect of the parameter �.
As it is apparent from �gures, the SSTEM algorithm captures the discontinuity well but

some numerical oscillations appear at the wave front. The over-shoots and under-shoots in the
numerical solution of the �rst algorithm could be removed by using the concept of di�erence
or slope limiters [26, 27]. Lapidus has developed an arti�cial di�usion technique in which
extra di�usion is added explicitly to the original equation [28]. The implementation of this
method for nonlinear problems becomes di�cult as the amount of di�usion is dependent on
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Figure 3. Case I—comparison of results obtained on various grids using SSTEM
and MSTEM algorithms with the exact solution.

Figure 4. Case I—(a) e�ect of tuning parameters on solution of the using SSTEM algorithm using 128
elements; and (b) comparison of results obtained by SSTEM and MSTEM algorithms.

the time step, grid size, and the velocity �eld. On the other hand, the MSTEM algorithm has
not captured the front as sharp as the SSTEM but gives a monotonic solution. Figure 4(b)
compares these two solutions. As it was mentioned before, when using MSTEM, halving the
grid size produces solutions as sharp as those of SSTEM but without any over-shoots or
under-shoots.
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Figure 5. Fractional �ow diagram and corresponding tangential saturation for zero residual saturation.

5.2. One-dimensional case II: Brooks–Corey model for relative permeability with zero
capillary pressure

For this case an analytical solution can be found in Reference [7]. According to this reference
the saturation of the wave front must remain constant and equal to the saturation of the
tangential point on the fractional �ow diagram shown in Figure 5. In this article, the residual
saturation is assumed to be zero, and therefore the saturation of the tangential point is 0.75.
As the saturation of the wave front is constant and also its velocity does not alter, after 1500
days the position of the wave front must be at x=119:29. The numerical solution of this
case using the SSTEM algorithm with optimum values for the tuning parameters is shown
in Figure 6(a). The e�ect of the tuning parameters is also shown in Figure 6(b). Similar to
the linear case, in this problem, the tuning parameter � practically has a weak e�ect on the
solutions. On the other hand, when no tuning parameter is applied, the solution is not only
nonmonotonic but also the discontinuity is captured with wrong strength and position. As it
is inferred from Figure 6(a), there is an expansion wave zone in the upstream and a constant
state region in the down-stream of the front. It is well known that this problem appears when
the entropy condition is not satis�ed [7]. Also, it should be noticed that as the Rankine–
Hugoniot condition is violated, the position of the wave front is not correct even though both
of the tuning parameters are used. The solution of this problem, using the MSTEM algorithm
is shown in Figure 7(a).
In order to study the e�ect of the residual saturations, another test case is studied in which

the residual saturations of water and oil are 0.2. All other parameters remain the same as
shown in Table I. The analytical solution can be found in Reference [7]. The numerical
solution for this case, using the SSTEM algorithm is highly oscillatory and is not shown
here. The numerical solution using the MSTEM algorithm is shown in Figure 7(b). In this
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Figure 6. Case II—(a) comparison of results obtained on various grids using
SSTEM algorithm with the exact solution; and (b) e�ect of tuning parameters

on solution of the using SSTEM algorithm using 128 elements.

Figure 7. Case II—comparison of results obtained on various grids using MSTEM algorithm with the
exact solution: (a) Srw = Srn = 0; and (b) Srw = Srn = 0:2.

case, the tangential saturation is 0.65 and the wave front after 1500 days reaches x=198:8m.
As observed from the �gure, the solution converges to the correct solution by increasing the
number of elements.
In contrast to the numerical solution of the SSTEM algorithm, this solution satis�es both the

Rankine–Hugoniot and Entropy conditions. It can be clearly seen that the scheme converges
to the correct solution as the mesh is re�ned. Using the MSTEM algorithm the under-shoots
in the downstream are always less than 10% while using the SSTEM algorithm produces large
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Figure 8. Case II—comparison of results obtained SSTEM and MSTEM algorithms.

under-shoots of up to 30% in the downstream. A comparison of the solutions obtained by
these two algorithms is given in Figure 8. Although for the linear case the SSTEM algorithm
behaves better than the MSTEM, the latter algorithm behaves much better for the nonlinear
case.

5.3. One-dimensional case III: Brooks–Corey model for relative permeability with
capillary pressure

In this test case, the e�ect of capillary pressure is taken into account. The problem is stud-
ied using both algorithms. Figures 9(a) and (b) show results of the SSTEM and MSTEM
algorithms, respectively. In this case, the e�ect of tuning parameters is negligible. The compu-
tations show that both methods have the same accuracy and practically give identical solutions.
From what was shown above, it can be deduced that in this case, the standard space–time
Galerkin method can be used instead, producing the same accuracy.

5.4. Five-spot problem

It was seen from 1D test cases that the SSTEM cannot predict the position and strength of
the saturation at the discontinuity. In the following 2D test cases, the MSTEM is used as the
main method while the results of SSTEM are also shown for comparison. Linear quadrilateral
elements are used throughout this study. Two of the computational grids used for this problem
are displayed in Figure 10. The coarse grid has 768 elements and 825 nodes and the �ne grid
consists of 12 288 elements and 12 513 nodes. Here, three �ve-spot problems are solved to
demonstrate the capability of the method in dealing with the 2D problems. These include one
homogeneous and two heterogeneous problems. The physical domain has a constant porosity
�=0:2. The residual saturations are srw = srn = 0:2. The initial pressure of the reservoir is
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Figure 9. Case III—(a) results obtained by the SSTEM algorithm; and
(b) the MSTEM algorithm for various grids.

Figure 10. Typical computational grids used for the �ve-spot problems: (a) coarse; and (b) �ne.

Pinit = 200 kPa. The Brooks–Corey model is used for the relative permeability functions. The
water is injected from the lower left well and oil is produced from the upper right well. In
all cases, the computational time step starts from one day and is adapted accordingly till the
simulation period completes.

5.4.1. Case IV: homogeneous problem. In this problem, the absolute permeability is K =
10−7 m2. The capillary pressure e�ect is negligible for this test case. The rate of water injection
is 0.12 kg=s. In Figure 11, the contour plots of saturation distributions after 200 days obtained
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Figure 11. Case IV—contours of saturation obtained by the MSTEM on the: (a) coarse; (b) �ne
grids; contours of saturation obtained by the SSTEM on the: (c) coarse; and (d) �ne grids.

by the SSTEM and MSTEM are compared for the coarse and �ne grids. Figure 12 shows the
streamlines and pressure contours obtained by MSTEM on the �ne grid. In Figure 13(a) the
cross-sectional saturation pro�les obtained by the MSTEM are compared for di�erent grids
along the diagonal of the square. Also, Figure 13(b) compares the results obtained by the
MSTEM and SSTEM methods along this diagonal. As it was seen in 1D cases, the solution
obtained by the SSTEM shows an entirely wrong behaviour while the MSTEM demonstrates
a signi�cant improvement over the SSTEM.
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Figure 12. Case IV—(a) streamlines; and (b) pressure contours obtained on the �ne grid.

Figure 13. Case IV—(a) comparison of saturation distributions obtained by MSTEM across the diagonal
for various grids; and (b) a comparison between MSTEM and SSTEM methods.

5.4.2. Case V: block heterogeneous problem. In this problem, the physical domain
(Figure 14) consists of two permeable regions; the central core region has an absolute per-
meability K =10−10 m2 and the surrounding background region has K =10−7 m2. The rate of
water injection is 0.12 kg=s. The contour plots of saturation distributions after 600 days are
compared for the coarse and �ne grids in Figure 15. The streamlines and pressure contours
obtained on the �ne grid are shown in Figure 16. Figure 17 shows the water front and 3D
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Figure 14. Physical domain and absolute permeability distributions for cases V and VI.

Figure 15. Case V—contours of saturation obtained on the: (a) coarse; and (b) �ne grids.

representation of the pressure contours obtained using the �ne grid. For this test case, no
over-shoot is observed as long as the Peclet number is restricted to 20. The results prove that
the modi�ed method can properly handle discontinuities in the absolute permeability at the
interfaces.
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Figure 16. Case V—(a) streamlines; and (b) pressure contours obtained on the �ne grid.

Figure 17. Case V—water front and pressure distribution after 600 days.

5.4.3. Case VI: continuous heterogeneous problem. In this problem, the physical domain
consists of a region with a continuous absolute permeability de�ned by [29]

log10 K =− 7 + sin(10� �x) sin(10� �y) + 0:7 sin(3� �x) cos(6� �y) + 0:3 sin(� �x=2) sin(� �y) (25)

where �x= x=300 and �y=y=300. The rate of water injection is 0.12 kg=s. The contour plots of
saturation distributions after 600 days are compared for the coarse and �ne grids in Figure 18.
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Figure 18. Case VI—contours of saturation obtained on the: (a) coarse; and (b) �ne grids.

Figure 19. Case VI—streamlines (left) and pressure contours (right) obtained on the �ne grid.

The streamlines and pressure contours obtained on the �ne grid are shown in Figure 19.
Figure 20 shows the water front and 3D representation of the pressure contours obtained
using the �ne grid.
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Figure 20. Case V—water front and pressure distribution after 600 days.

6. CONCLUSION

It was shown that the proposed modi�ed space–time method performs well in comparison with
the original Petrov–Galerkin space–time method. Although the modi�ed method requires nearly
double the amount of grid elements in discontinuous regions, for linear advection–di�usion
problems with initial sharp discontinuities, it gives a monotone solution without noticeable
phase error and over=under-shoots. It was also shown that for such problems tuning parameters
do not have signi�cant e�ect on the solution.
In nonlinear advection–di�usion problems, which are represented here by an immiscible

two-phase �ow in porous media, it was shown that while the original space–time method
does not satisfy the Rankine–Hugoniot and the entropy conditions, the modi�ed method does
so by predicting the correct position and level of saturation at the wave front. The method
exhibits some undershoots at the sharp front, which can be alleviated by limiting the solution
in this region.
Numerical studies prove that the e�ect of capillary pressure helps the original method to

achieve results as accurate as those obtained by the modi�ed method. In other words, in
low Peclet numbers, both algorithms give almost identical results. It can be concluded that
for such problems extra di�usion and=or dispersion is required so that the standard Galerkin
method can be used instead which can reduce the cost of solution.
Finally, it was shown that the modi�ed method is extendible to 2D problems and can

produce accurate results for homogeneous medium with discontinuous absolute permeability
and heterogeneous media.
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